پرش به محتوا

الشفاء: تفاوت میان نسخه‌ها

۹ بایت حذف‌شده ،  ‏۶ آوریل ۲۰۱۷
جز
جایگزینی متن - 'در باره' به 'درباره'
جز (جایگزینی متن - 'م«' به 'م «')
جز (جایگزینی متن - 'در باره' به 'درباره')
خط ۷۹: خط ۷۹:
سطوح متشابهه، عنوان مقاله ششم است. بو على سطوح متشابهه را به زواياى متساويه و اضلاع تناسبيه‌ى آنها معنا مى‌كند و مى‌گويد: سطوح متكافئه، سطوحى هستند كه اضلاعشان بنا بر تقدم و تأخر با هم متناسب مى‌باشند.
سطوح متشابهه، عنوان مقاله ششم است. بو على سطوح متشابهه را به زواياى متساويه و اضلاع تناسبيه‌ى آنها معنا مى‌كند و مى‌گويد: سطوح متكافئه، سطوحى هستند كه اضلاعشان بنا بر تقدم و تأخر با هم متناسب مى‌باشند.


مقاله هفتم در باره اشتراك و تباين و...است. در اين مقاله، راجع به وحدت، عدد، زوج و فرد توضيحاتى داده شده است؛ براى مثال مى‌فرمايد: واحد، به هر چيزى كه عقلاً قابل قسمت نباشد، گفته مى‌شود و عدد، جماعت مركبى از واحدها است. عدد زوج، عددى است كه قابل قسمت به دو عدد مساوى باشد.
مقاله هفتم درباره اشتراك و تباين و...است. در اين مقاله، راجع به وحدت، عدد، زوج و فرد توضيحاتى داده شده است؛ براى مثال مى‌فرمايد: واحد، به هر چيزى كه عقلاً قابل قسمت نباشد، گفته مى‌شود و عدد، جماعت مركبى از واحدها است. عدد زوج، عددى است كه قابل قسمت به دو عدد مساوى باشد.


هشتمين مقاله، متعلق به بحث متواليات و نهمين مقاله در ادامه آن مى‌باشد و عنوان «متواليات و ما يتصل بها من عوامل و غيرها» را به خود اختصاص داده است. مقاله دهم، در اشتراك و تباين است و در ادامه خطوط مشترك توضيح داده شده است كه مثل ساير بخش‌ها با اشكال گوناگونى همراه است.
هشتمين مقاله، متعلق به بحث متواليات و نهمين مقاله در ادامه آن مى‌باشد و عنوان «متواليات و ما يتصل بها من عوامل و غيرها» را به خود اختصاص داده است. مقاله دهم، در اشتراك و تباين است و در ادامه خطوط مشترك توضيح داده شده است كه مثل ساير بخش‌ها با اشكال گوناگونى همراه است.


يازدهمين مقاله، در باره هندسه فراغيه مى‌باشد. در اين قسمت، اشكال به مجسم، منشور و مخروط و استوانه تقسيم شده و هر كدام با توضيح و تعريف خاص خودش مورد بررسى واقع گرديده و شيوه محاسبه هر كدام، با ترسيم اشكالى بيان شده است.
يازدهمين مقاله، درباره هندسه فراغيه مى‌باشد. در اين قسمت، اشكال به مجسم، منشور و مخروط و استوانه تقسيم شده و هر كدام با توضيح و تعريف خاص خودش مورد بررسى واقع گرديده و شيوه محاسبه هر كدام، با ترسيم اشكالى بيان شده است.


مقاله دوازدهم، كثيرات السطوح نام دارد كه در واقع بحث از اشكالى است كه داراى چند سطح مختلف مى‌باشند. عناوين مقاله سيزدهم، چهاردهم و پانزدهم به ترتيب عبارت است از: «القسمة ذات الوسط و الطرفين و المضلعات المنتظمة»، «القسمة ذات الوسط و الطرفين و المجسمات المنتظمة» و «رسم مجسمات منتظمة داخل بعضها».
مقاله دوازدهم، كثيرات السطوح نام دارد كه در واقع بحث از اشكالى است كه داراى چند سطح مختلف مى‌باشند. عناوين مقاله سيزدهم، چهاردهم و پانزدهم به ترتيب عبارت است از: «القسمة ذات الوسط و الطرفين و المضلعات المنتظمة»، «القسمة ذات الوسط و الطرفين و المجسمات المنتظمة» و «رسم مجسمات منتظمة داخل بعضها».
خط ۱۱۱: خط ۱۱۱:
مقاله دوم، داراى دو فصل است كه اولى، در جمع كردن بعضى از ابعاد با برخى ديگر و جدا كردن بعضى از بعضى ديگر مى‌باشد و دومى، در مضاعف و نصف كردن ابعاد است.
مقاله دوم، داراى دو فصل است كه اولى، در جمع كردن بعضى از ابعاد با برخى ديگر و جدا كردن بعضى از بعضى ديگر مى‌باشد و دومى، در مضاعف و نصف كردن ابعاد است.


مقاله سوم، شامل چهار فصل است كه فصل اول، در جنس و تقسيم آن به انواع است. فصل دوم، در تعداد اجناس است. فصل سوم، در باره اجناس قوى است. فصل چهارم، در باره اجناس ملايم است.
مقاله سوم، شامل چهار فصل است كه فصل اول، در جنس و تقسيم آن به انواع است. فصل دوم، در تعداد اجناس است. فصل سوم، درباره اجناس قوى است. فصل چهارم، درباره اجناس ملايم است.


مقاله چهارم، داراى دو فصل است كه اولى، در جماعت و دومى، در انتقال است. مقاله پنجم، شامل پنج فصل است كه اولى، در نت‌هاى موسيقى يا علم اوزان و دومى، در وزن‌خوانى يا حكايت آهنگ‌ها با زبان و سومى، در انواع اوزان متصل و منفصل و چهارمى، در اوزان چهار تايى، پنج تايى، شش تايى و اوزان معمولى و پنجمى در اوزان شعرى است.
مقاله چهارم، داراى دو فصل است كه اولى، در جماعت و دومى، در انتقال است. مقاله پنجم، شامل پنج فصل است كه اولى، در نت‌هاى موسيقى يا علم اوزان و دومى، در وزن‌خوانى يا حكايت آهنگ‌ها با زبان و سومى، در انواع اوزان متصل و منفصل و چهارمى، در اوزان چهار تايى، پنج تايى، شش تايى و اوزان معمولى و پنجمى در اوزان شعرى است.
خط ۱۲۳: خط ۱۲۳:
بنا بر اين مباحث علمى موسيقى [[فارابی، محمد بن محمد|فارابى]] و بو على سينا، بر موسيقى علمى زمان خودشان تطبيق مى‌نموده و اين دانشمندان، اسرار آن را مكشوف و قوانين آن را پى‌ريزى كرده‌اند.
بنا بر اين مباحث علمى موسيقى [[فارابی، محمد بن محمد|فارابى]] و بو على سينا، بر موسيقى علمى زمان خودشان تطبيق مى‌نموده و اين دانشمندان، اسرار آن را مكشوف و قوانين آن را پى‌ريزى كرده‌اند.


روش بو على، در بحث و تحقيق در باره موسيقى، نشان مى‌دهد كه عقايد متقدمين يونانى خود؛ يعنى پيروان مكاتب فيثاغورث، افلاطون و بطلميوس را پيروى ننموده و به خصوص در مورد جست‌وجوى رابطه‌اى بين اوضاع و احوال آسمان و خواص روح و ابعاد موسيقى، عقايد آنان را صحيح ندانسته و فلسفه آنها را مندرس شمرده است و معتقد است كه آنان، صفات اصلى و كيفيات اتفاقى اشيا را به جاى هم گرفته‌اند و در شناختن حقايق اشيا راه صحيح نپيموده‌اند؛ آن‌جا كه در مقدمه، مى‌گويد: هم‌چنين از جست‌وجوى رابطه‌اى بين احوال آسمان و خواص روح و ابعاد موسيقى، خوددارى مى‌كنيم تا از روش كسانى كه از حقيقت هر علم آگاهى ندارند، پيروى نكرده باشيم، چه اينان وارث فلسفه‌اى مندرس مى‌باشند؛ صفات اصلى و كيفيات اتفاقى اشيا را به جاى هم مى‌گيرند و خلاصه كنندگان نيز از آنها تقليد كرده‌اند، ولى اشخاصى كه فلسفه حقيقى را فهميده و مشخصات صحيح اشيا را درك كرده‌اند، اشتباهاتى را كه در اثر تقليد رخ مى‌دهد، تصحيح نموده و غلطهايى را كه زيبايى‌هاى افكار كهنه را مى‌پوشاند، پاك كرده‌اند؛ اينان سزاوار تحسينند. بو على، در مباحث موسيقى، از [[فارابی، محمد بن محمد|فارابى]] پيروى كرده و عقايد او را تشريح نموده است و آنها را مختصر و مفيد و بدون تكرار تشريح نموده است و هر مطبى را به دلايل و براهين منطقى مستند نموده و در اين راه، نه تنها به اصول فيزيكى و رياضى تكيه مى‌كند كه دامنه بحث را به فلسفه و علم النفس نيز مى‌كشاند.
روش بو على، در بحث و تحقيق درباره موسيقى، نشان مى‌دهد كه عقايد متقدمين يونانى خود؛ يعنى پيروان مكاتب فيثاغورث، افلاطون و بطلميوس را پيروى ننموده و به خصوص در مورد جست‌وجوى رابطه‌اى بين اوضاع و احوال آسمان و خواص روح و ابعاد موسيقى، عقايد آنان را صحيح ندانسته و فلسفه آنها را مندرس شمرده است و معتقد است كه آنان، صفات اصلى و كيفيات اتفاقى اشيا را به جاى هم گرفته‌اند و در شناختن حقايق اشيا راه صحيح نپيموده‌اند؛ آن‌جا كه در مقدمه، مى‌گويد: هم‌چنين از جست‌وجوى رابطه‌اى بين احوال آسمان و خواص روح و ابعاد موسيقى، خوددارى مى‌كنيم تا از روش كسانى كه از حقيقت هر علم آگاهى ندارند، پيروى نكرده باشيم، چه اينان وارث فلسفه‌اى مندرس مى‌باشند؛ صفات اصلى و كيفيات اتفاقى اشيا را به جاى هم مى‌گيرند و خلاصه كنندگان نيز از آنها تقليد كرده‌اند، ولى اشخاصى كه فلسفه حقيقى را فهميده و مشخصات صحيح اشيا را درك كرده‌اند، اشتباهاتى را كه در اثر تقليد رخ مى‌دهد، تصحيح نموده و غلطهايى را كه زيبايى‌هاى افكار كهنه را مى‌پوشاند، پاك كرده‌اند؛ اينان سزاوار تحسينند. بو على، در مباحث موسيقى، از [[فارابی، محمد بن محمد|فارابى]] پيروى كرده و عقايد او را تشريح نموده است و آنها را مختصر و مفيد و بدون تكرار تشريح نموده است و هر مطبى را به دلايل و براهين منطقى مستند نموده و در اين راه، نه تنها به اصول فيزيكى و رياضى تكيه مى‌كند كه دامنه بحث را به فلسفه و علم النفس نيز مى‌كشاند.


مؤلف، در تعريف موسيقى، رابطه علم موسيقى را با علوم ديگر چنين توضيح مى‌دهد: «موسيقى، يكى از علوم رياضى است كه منظور از آن، مطالعه صداها و بحث در ملايمت و عدم ملايمت و هم‌چنين كشش آنها و قواعد ساختن قطعات موسيقى است، بنا بر اين علم موسيقى، شامل دو قسمت است: علم تركيب نغمات مربوط به صداهاى موسيقى و علم اوزان مربوط به زمان‌هايى كه صداهاى يك نغمه را از يك‌ديگر جدا مى‌سازد. پايه‌هاى اين دو قسمت بر اصولى استوار است كه از علومى خارج از موسيقى اخذ مى‌شوند؛ بعضى از اين اصول، از رياضى و بعضى ديگر، از فيزيك و علوم طبيعى و برخى، از هندسه گرفته مى‌شوند.
مؤلف، در تعريف موسيقى، رابطه علم موسيقى را با علوم ديگر چنين توضيح مى‌دهد: «موسيقى، يكى از علوم رياضى است كه منظور از آن، مطالعه صداها و بحث در ملايمت و عدم ملايمت و هم‌چنين كشش آنها و قواعد ساختن قطعات موسيقى است، بنا بر اين علم موسيقى، شامل دو قسمت است: علم تركيب نغمات مربوط به صداهاى موسيقى و علم اوزان مربوط به زمان‌هايى كه صداهاى يك نغمه را از يك‌ديگر جدا مى‌سازد. پايه‌هاى اين دو قسمت بر اصولى استوار است كه از علومى خارج از موسيقى اخذ مى‌شوند؛ بعضى از اين اصول، از رياضى و بعضى ديگر، از فيزيك و علوم طبيعى و برخى، از هندسه گرفته مى‌شوند.
خط ۱۵۵: خط ۱۵۵:
تحقيق احوال قمر، موضوع مقاله پنجم است كه موارد مختلفى در اين باره مطرح شده است. در مقاله ششم، جداول اجتماعات و استقبالات آمده كه بيان حدود كسوف و خسوف و جداول آنها موضوع اين مقاله‌اند.
تحقيق احوال قمر، موضوع مقاله پنجم است كه موارد مختلفى در اين باره مطرح شده است. در مقاله ششم، جداول اجتماعات و استقبالات آمده كه بيان حدود كسوف و خسوف و جداول آنها موضوع اين مقاله‌اند.


مقاله هفتم، راجع به امور كواكب ثابت است و مقاله هشتم، در باره تقارن آن كواكب ثابته با خورشيد، در هنگام طلوع و غروب و وسط ظهر است. فصل نهم و دهم و يازدهم، در جوامع امور كواكب متحيره است. مقاله دوازدهم، در باره مقدماتى است كه آگاهى بر آنها براى شناخت رجوع كواكب پنج‌گانه لازم است. مقاله سيزدهم، در باره اصولى است كه در ممر كواكب پنج‌گانه بر اساس آنها عمل مى‌شود.
مقاله هفتم، راجع به امور كواكب ثابت است و مقاله هشتم، درباره تقارن آن كواكب ثابته با خورشيد، در هنگام طلوع و غروب و وسط ظهر است. فصل نهم و دهم و يازدهم، در جوامع امور كواكب متحيره است. مقاله دوازدهم، درباره مقدماتى است كه آگاهى بر آنها براى شناخت رجوع كواكب پنج‌گانه لازم است. مقاله سيزدهم، درباره اصولى است كه در ممر كواكب پنج‌گانه بر اساس آنها عمل مى‌شود.


[[ابن سینا، حسین بن عبدالله|ابن سينا]]، كتب ديگرى نيز در علم هيئت تأليف كرده است كه از جمله آنها مى‌توان به بخش نهم كتاب نجات، تحرير المجسطى، علة قيام الارض فى حيزها يا قيام الارض فى وسط السماء، تفسير السماء و العالم، كتاب الارصاد الكلية، مقالة فى خواص خط الاستواء و معرفة تركيب الافلاك اشاره كرد.
[[ابن سینا، حسین بن عبدالله|ابن سينا]]، كتب ديگرى نيز در علم هيئت تأليف كرده است كه از جمله آنها مى‌توان به بخش نهم كتاب نجات، تحرير المجسطى، علة قيام الارض فى حيزها يا قيام الارض فى وسط السماء، تفسير السماء و العالم، كتاب الارصاد الكلية، مقالة فى خواص خط الاستواء و معرفة تركيب الافلاك اشاره كرد.
خط ۱۶۱: خط ۱۶۱:
ابزار ساخته شده توسط [[ابن سینا، حسین بن عبدالله|ابن سينا]] براى رصد ستارگان، توجه بسيارى از دانشمندان اين علم را به خود جلب كرده است؛ براى نمونه مى‌توان به يك مورد از آنها اشاره كرد كه از ابتكارات شيخ محسوب مى‌گردد و شرح آن به اين صورت است: دو بازوى OA و OB كه هر دو داراى ضخامت و مدرج هستند، در نقطه O لولا مى‌كنيم. هر يك از دو بازو داراى طولى لااقل به اندازه 3/5 متر است، ولى طول بازوى زيرين مى‌تواند كمى بيشتر از بازوى بالايى باشد. بر روى بازوى OB و عمود بر آن، زائده I به طور ثابت نصب شده كه روى آن، دو سوراخ P و Q قرار دارند. زائده I I نيز داراى ساختمانى عينا مانند زائده I و عمود بر OB مى‌باشد، به طورى كه مى‌توان آن را در طول OB حركت داد. هم‌چنين بازوى متحركى عمود بر OA داريم و واضح است كه با حركت دادن C در امتداد OA زاويه بين دو بازو، تغيير ارتفاع ستاره S در نصف النهار اول بازوى OA را به طور كاملا افقى، در امتداد خط نصف النهار قرار مى‌دهيم و با تغيير موضع C ستاره S را در امتداد OB رصد مى‌كنيم، اگر C دقيقا روى يكى از نقاط تقسيم كه زاويه را نشان مى دهد، افتاد، ارتفاع را مى‌توان از روى درجه‌بندى خواند؛ در غير اين صورت C بين دو درجه متوالى مربوط به دو زاويه 11 قرار دارد؛ حال يا ستاره را با قرار دادن C روى 1 و تغيير محل زائده I I در دو سوراخ P و Q رصد مى‌كنيم يا اينكه C را روى 1 قرار مى‌دهيم و با تغيير محل زائده I I ستاره را در امتداد P و Q رصد مى‌كنيم و ارتفاع ستاره عبارت خواهد بود از 1 - 1. از اين‌جا معلوم مى شود كه زائده‌هاى I و I I نقش ورنيه را براى اين دستگاه اندازه‌گيرى ايفا مى‌كنند. قابل ذكراست كه زائده‌ها طورى ساخته شده‌اند كه خط QP بازوى OB را نمى‌تواند قطع كند.
ابزار ساخته شده توسط [[ابن سینا، حسین بن عبدالله|ابن سينا]] براى رصد ستارگان، توجه بسيارى از دانشمندان اين علم را به خود جلب كرده است؛ براى نمونه مى‌توان به يك مورد از آنها اشاره كرد كه از ابتكارات شيخ محسوب مى‌گردد و شرح آن به اين صورت است: دو بازوى OA و OB كه هر دو داراى ضخامت و مدرج هستند، در نقطه O لولا مى‌كنيم. هر يك از دو بازو داراى طولى لااقل به اندازه 3/5 متر است، ولى طول بازوى زيرين مى‌تواند كمى بيشتر از بازوى بالايى باشد. بر روى بازوى OB و عمود بر آن، زائده I به طور ثابت نصب شده كه روى آن، دو سوراخ P و Q قرار دارند. زائده I I نيز داراى ساختمانى عينا مانند زائده I و عمود بر OB مى‌باشد، به طورى كه مى‌توان آن را در طول OB حركت داد. هم‌چنين بازوى متحركى عمود بر OA داريم و واضح است كه با حركت دادن C در امتداد OA زاويه بين دو بازو، تغيير ارتفاع ستاره S در نصف النهار اول بازوى OA را به طور كاملا افقى، در امتداد خط نصف النهار قرار مى‌دهيم و با تغيير موضع C ستاره S را در امتداد OB رصد مى‌كنيم، اگر C دقيقا روى يكى از نقاط تقسيم كه زاويه را نشان مى دهد، افتاد، ارتفاع را مى‌توان از روى درجه‌بندى خواند؛ در غير اين صورت C بين دو درجه متوالى مربوط به دو زاويه 11 قرار دارد؛ حال يا ستاره را با قرار دادن C روى 1 و تغيير محل زائده I I در دو سوراخ P و Q رصد مى‌كنيم يا اينكه C را روى 1 قرار مى‌دهيم و با تغيير محل زائده I I ستاره را در امتداد P و Q رصد مى‌كنيم و ارتفاع ستاره عبارت خواهد بود از 1 - 1. از اين‌جا معلوم مى شود كه زائده‌هاى I و I I نقش ورنيه را براى اين دستگاه اندازه‌گيرى ايفا مى‌كنند. قابل ذكراست كه زائده‌ها طورى ساخته شده‌اند كه خط QP بازوى OB را نمى‌تواند قطع كند.


در باره احكام نجوم، بايد گفت [[ابن سینا، حسین بن عبدالله|ابن سينا]] از منكران آن بوده و در اين باره نيز رساله‌اى نوشته به نام ابطال احكام النجوم يا رسالة فى الرد على المنجمين. وى علم احكام نجوم را چنين تعريف كرده است: احكام نجوم، علمى است متكى به گمان و تخمين و هدف آن اين است كه از صور فلكى ستارگان نسبت به يك‌ديگر و نسبت به صور منطقة البروج و از رابطه آنها با زمين، نشانه‌ها و اخبارى را راجع به ممالك، طالع‌ها، و... دريابد.
درباره احكام نجوم، بايد گفت [[ابن سینا، حسین بن عبدالله|ابن سينا]] از منكران آن بوده و در اين باره نيز رساله‌اى نوشته به نام ابطال احكام النجوم يا رسالة فى الرد على المنجمين. وى علم احكام نجوم را چنين تعريف كرده است: احكام نجوم، علمى است متكى به گمان و تخمين و هدف آن اين است كه از صور فلكى ستارگان نسبت به يك‌ديگر و نسبت به صور منطقة البروج و از رابطه آنها با زمين، نشانه‌ها و اخبارى را راجع به ممالك، طالع‌ها، و... دريابد.


== وضعيت كتاب ==
== وضعيت كتاب ==
۴۲۵٬۲۲۵

ویرایش